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Scattering by Discontinuities of Surface Waves on a Unidirectionally

Conducting Screen

by

S. R. Seshadri

Harvard University

Ca ibridge, Massachusetts

Abstract

It is shown that a plane screen consisting of closely-spaced

parallel wires which are separated from one another and whichare

such that the radius of the wires and the spacing between them are

small in comparison towavelength, can supporta surface wave, the

spread of whose field components depends only on the angle which

the direction of propagation makes with the direction of the wires

The problem of radiation from a discontinuity in such a semi-in

finite waveguide is studied for the following three types of discon -

tinuities i) when it terminates in empty space, ii) when it

terminates at another such semi-infinite waveguide having differ-

ent propagation characteristics, and iii) when it terminates at

a perfectly conducting half-plane. In each case, the power reflec -

tion coefficient, where applicable the power transmission coef -

ficient, the loss of power due to radiation and its angular distriku -

tion are evaluated. The motivation for this investigation is briefly

indicated.
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Introduction

The propagation of electromagnetic waves in waveguides with anisotropic

walls has in recent years assumed practical importance in long-distance wave-

guide communication. [ 1,2] One such waveguide which is commonly used is in

the form of a tightly-wound helix, in which the adjacent turns are separated from

each other. In this connection it is of interest to investigate theoretically the ef-

fect on the propagation of guided waves introduced by the junction formed by either

two different anisotropic (helical) waveguides or a helical waveguide and a circular

waveguide having perfectly conducting walls. Also, helical waveguides of finite

length, known commonly as helical antennas are widely used to obtain radiation

along the axis of the helix. In view of this practical application the investigation

of radiation from the open end of a helical waveguide is also of interest.

As a first step in the understanding of the more difficult problem of radia-

tion from discontinuities in a helical waveguide, it is advantageous to treat the

limiting case in which the radius of the helix becomes infinite. For the limiting

case, the helical waveguide degenerates into a plane screen which is conducting

only in the direction of the wires composing it and insulating in the perpendicular

direction. In this paper, a treatment is given for the problem of radiation from p
discontinuities in such a planar waveguide consisting'of.parallel wires which are

separated from each other and which are such that the radius of the wires and the

spacing between them are quite small compared to wavelength.

In the first section, it is shown that an anisotropic planar surface can sup-

port a guided wave which is attenuated exponentially in the direction normal to

the surface. The spread of the field in this surface waveguide decreases as the
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angle between the direction of propagation and the direction of the wires becomes

close to j. Appropriate boundary conditions applicable at the surface of such a

unidirectionally conducting screen have been given recently by Karp. [ 3] Radia-

tion from the open end of such a semi-infinite surface waveguide is treated in the

next section. Expressions for the power reflection coefficient and the radiation

pattern are obtained.

In the third section, the electromagnetic fields produced at the junction of

two semi-infinite surface waveguides are examined; the wires composing the two

surface waveguides are assumed to be in different directions. It is important to

note that by a suitable formulation this problem is reduced to the question of a

solution of a functional equation similar to the one studied previously by Kay. [ 4]

A treatment is given in the final section for the problem of radiation from

the junction formed by a semi-infinite surface waveguide and a perfectly conduc-

ting half-plane. For this case, the power reflection coefficient and the radiation

pattern are fourd to be the same as for the open-ended waveguide.
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Surface Wave on a Unidirectionally Conducting Screen

Consider a unidirectionally conducting screen occupying the region

- m0 , x - m co E y -E o , and z = 0, where x, y, z form a right-handed rec -

tangular coordinate system. Also set up two rotated coordinate systems (R 1, 71,z)

and (9 2' z) where

1,2 x Cos a, 2 + y sin a1 ,2

'i,2 = -xsina1, 2 + y cos a 1 , 2

z = z 0 -ciZ
z Z0a1,2 < (1

The screen is assumed to be conducting in the direction El only. The electro-

magnetic fields E , H satisfy the time harmonic Maxwell's equations

VxE = ikH

VxH = -ikE (2)

in the region exterior to the screen. The harmonic time dependence 'e it is

implied for all the field components. On the screen the following boundary con-

ditions are satisfied

1 (x,y,o) = 0 (3)

[H9 (x,y) ] = Hlx,y,o+) - H I (x,y,o-) = 0 (4)

[E (x,y) ] = E (x,y,o+) - E (x,y,o-) = 0 (5)

Let the mode for which H = 0 be considered. All the field components are

conveniently derived using the electric vector potential A , which, since H = 0

is entirely in the 1 direction.The geometry of the screen itself is independent of

the y-coordinate., hence, it is reasonable to look for the field components which
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do not vary with y. Because of (1), it is seen that

COB Ci 5X -n sinai -
cos I  I (6)

Also since

E Vx V x A (8)

it results that

1H1 = 0

H9 0

H = - A (x,z)

Hz z

zl = sin a, A(xz)

ax
E2i 2

E = Cos al sin a, A(x,z)

z xz A (x,z)

In view of (9), boundary condition (4) is automatically satisfied. Boundary con-

dition (5)7 will be satisfied if

A(x,z) = A(x,-z) (10)

For a , boundary condition (3) will be satisfied if A(x,z) has the form

* ik sec a x
e This shows immediately that a unidirectionally conducting screen

supports a wave traveling in the x-direction with a phase velocity vp = c Cos a,

which is less than c , the velocity in free space. For a wave traveling in the
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direction of the negative x-axis, since

2 + -- 2 + k 2 ) A(x,z) = 0 (11)
x z

I -k t a n a l z

A(x,z) A0 e-kscx ek tan a z. 0 
(12)

It is to be noted that the field components decay exponentially as z lincreases.

This surface wave is either 'loosely bound' or 'tightly bound' to the screen, de-

pending on a 1 being small or large; there is no surface wave for a,=0, Z . Using

(9) and (12) , the field components of the surface wave are written down explicitly

as follows

H (x,z) = 0

- -iksec al x + k tan a, zH (x,z) =+ e I ekanlz

Hz (x, z) = e-ik sec al x e + ktan a1 z

(x,z) = + i H (x,z) (13)

In (13), the upper sign is for z > 0 and the lower sign z < 0 . An arbitrary

value is used for the constant A0 in (13). Notice further that

H , (x,z) =-H ' (x,-z)

E (x,z) = E I, (x,-z)
I',] T11I

H z(x,Z) = Hz (x,-z)

E Z(x,z) =-Ez (x,-z) (14)
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The relations (14) result on account of the symmetry about the plane z = 0 . It

is to be noticed that in view of (14), the equivalent to boundary condition (4) on

the screen is

H (x,y,o) = 0 (15)

It is now desired to examine the effect of terminating the surface waveguide

(0 S x 1 co) at x = 0 , on the surface wave given by (13) when it is incident from

x = co. On account of the symmetry relations (14), it is enough to consider the

region z > 0 .

Radiation from the Open End of the Surface Waveguide

No surface wave can be supported in the region x < 0 and therefore, the

incident surface wave will be partly reflected back as a surface wave and partly

converted into a radiation field. The current on the screen,and therefore the vector

potential,are both only in the Cl direction and g, component of H is not generated

by the discontinuity. It is assumed that k has a small positive imaginary part E

which is set equal to zero inthe final formulas. All the field components may be

obtained from the vector potential A(x,z) which is related to the electric current

density i(x) by the formula

C3O

A(x,z) = A(x,-z) i Hoi') [H0  [k./lx-x7j + z2] dx' z > 0 (16)

0

By making use of the following representations

E (x,z) = e'C x EC (C,z) dC (17a)I Z " I
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i (x) 1 ei X I (C) dC (17b)

S1 eiC xA (C,z) dC (17c)

and (9), it follows for z = 0 that

= i(k - cos aC 2  (I,0) (18)

Since from (16)

x (CMz -T (C) _ eiz (19)

where Im =Im1k 2 -C 2 >0, (18) reduces to

-() =- cos a1 [(k seca) (20)12

It is first necessary to know the regions of regularity of the various

transforms in (20). From (13), the incident total current density is obtained as

ii(x) 2 -ik sec al x (21)

Also as x.-* co, i(x) should obviously be of the form

i(x) = 2 [e - ik sec ax +R e iksec a , (22)

where the first term is the incident current density and R is the reflection coef-

ficient at x = 0. It results from (22) that [ (k sec a,) 2 - C2] -T(c) is regular in

the lower half-plane (Im C < r). Also (c,0) is regular in the upper half-plane

(Ir C >-f). In addition, the transform of the Hankel function 2 is regular

and has no zero in the strip Im C 1 5 E,and therefore, the Wiener-Hopf procedure

can be applied to solve (20). Rewriting (20) as

(k sec al)2 - C 2 T (C) 1 -2 k sec al k ET (CIO) ,1(23)
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it is seen that the right-hand side of (23) is regular in the upper half-plane and the

left-hand side is regular in the lower half-plane. Both are regular in the strip

Im C I < e and may be considered as analytic continuations of each other; together

they define an integral function in the finite C-plane. By considering the asympto -

tic behavior of either side of (23) as -. o, the integral function defined by (23)

may be shown to be a constant. By applying the Meixner corner condition, it is

clear that the singularity of E (x,O) at x = 0 is of the form x1/2 and hence,

1 -1/2 as I Co. From the right-hand side of (23), the integral
function is seen to be a constant. Therefore, it is clear from (23) that I(C) -3_

as C -*oo, and hence, it follows that i(x) vanishes at x = 0 as x/2. This is in

accordance with the Meixner corner condition and the requirement that the cur-

rent at the end of the wires composing the screen should vanish.

From (23) and (17b), it results that

I D 1 eiX

ITxY [ (k sec a - C (

where D is a constant to be determined and the integration contour passes below

both the poles C = +k sec a 1 By closing the contour in the lower half-plane, it

results that i(x) = 0 for x < 0, as it should. By closing it in the upper half-plane

the value of i(x) for x > 0 can be evaluated. In particular, since the incident

current density is contributed by the pole C= -k sec al , it may be derived from (24)

and (21) that

4ik 1/2 sec a1
D (1 + sec a,) 1/2 (25)

Since the pole C = k sec a, gives rise to the reflected current density, it is ob -
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tained from (22), (23), and (25) that
1

R =(-(c~s ) (26)

The magnitude of the reflection coefficient monotonically increases as a 1 increases.

With the help of (17c), (19), and (24), it follows that

A(x,z) = iD e2X+iz Z 2 dc. (27)
qTi V/k+C(k Z sec a.1 -

It is possible to express A(x,z) in a closed form in terms of Fresnel integrals.

However, since the interest is only in finding the radiation pattern, the expres-

sion for A(x,z) , valid in the far zone, will be found. Introduce the polar co -

ordinate s

-x = p Cos 0 z = p sinO (0 ( 0 <_ ii . (28)

The path of integration in (27) is deformed by setting

C= k sin T k cos T (29)

With (28) and (29), (27) reduces to

A(pQ) D - sin ikp sin (0- T)d. (30)
4, k3  (sec a1 - sin e0

For kp >> 1, (30) is evaluated by the method of stationary phase to yield

sec aI1  (_2p\ 1/2 e(kp _ __ (1/_o 1)/2
A(p,i) e (31)

k(l+sec a e (sec al - cos 0)

Since A(p,O) is in 1 direction, it follows from (1) and (28) that

A(pQ) -p cos 0 cos a1 + g sin 9 sin a1 +y sin al1 A(p,0) (32)
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With the help of (32), the components of the field quantities are readily computed

to yield

=HJ 2 2 1 l+ cos Q) (33)
Tr p (I+ sec 3 1) (sec 2 a,-cos2

(3)

Hence, the total power radiated per unit width of the screen is

e z4 cosaR[Hi 2 p dQ = co (34)

k tan c (I+ cos a,)
-iT

It is to be noted that (34) gives the power radiated in both the half-spaces z , 0.

From (13), the total incident power flowing across unit width in the direction of

propagation is obtained as

CO Cl Z co s a "

= 2 H 1 cosa, dz = 4 cosa e-Zktan1z dz=k----l.-

0 0

The total power carried by the reflected surface wave per unit width of the

screen is obtained using (26) as follows :

2p 2 2cosal (1- cosa (3
r i = .ktana + cos a, (36)

Using (34) and (36), it results that

P +P 2 cos al P
R r k-tan a1  1

Hence, it is seen that the total incident power per unit width of the screen is equal

to the sum of the power carried by the reflected surface wave and the power con -

verted into the radiation field.

The radiation pattern as given in (33) is plotted in Fig. I for four dif-

ferent values of a, . It is seen to consist of a single lobe with its null in the di -



TR349 -12-

rection of the surface waveguide and its maximum in the direction of the geo -

metrical extension of the waveguide. Besides, the beam width is seen to reduce

as a1 is decreased. Also, it is obvious from (34) and (35) that the proportion of

the incident power that is radiated, monotonically decreases, at first slowly and

then more rapidly as a1 is increased. If the general features of radiation of the

limiting case are also true for the helic& guide, then it follows that as the pitch

is increased, both the reflection at the open end and the beam width of the pattern

are reduced for the corresponding mode of excitation.

Radiation from Discontinuity Formed by the Junction of Two Surface Waveguides

Another unidirectionally conducting semi-infinite screen is now considered

to occupy the region (-co <_ x< 0 , -co<_y< co , z 0 ) and is joined along x = 0

to the first surface waveguide (0 e x < co , -o _ y < o, z = 0). The second semi-

infinite screen (-co < x < 0 ) is assumed to be conducting in the direction 2 and

insulating in the perpendicular direction T1 where % are given in (1) . As

before, the surface wave given by (13) is assumed to be incident from x = o. At

the discontinuity x = 0, a part of the incident surface wave is reflected, another

part transmitted as a surface wave and the remaining energy in the incident sur-

face wave is converted into a radiation field.

A general solution of Maxwell's equations (2) can be obtained [51 as the

sum of two independent solutions El and E 2 such that

Type I = -i H

Type II E iH 1 (38)
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From (3), (4), (5), and (15), the boundary conditions for z = 0 become

,# -- 0 forx> 0; 0 forx<0

2 0 forx> 0; z for x 0 (39)

For the incident field it in seen that

E = -iH for z> 0

E = iH for z < 0 . (40)

Since E and E 2 are separated in the boundary conditions and since the fields

preserve the symmetry of the wavetype [namely E1 or E2 ] of the incident wave,

it follows that for the scattered fields also

E - i H for z > 0

E i H for z e 0 (41)

Again the symmetry about z = 0 [ 14] permits the detailed consideration of only

the region z > 0

The incident field as vsell as the geometry of the problem is independent

of the y-coordinate and hence, all the components of the scattered field likewise

are independent of the y-coordinate, and are therefore derived conveniently using

the y-component of the electric and magnetic fields. In view of (41), the entire

scattered fields may be derived from the y-component of the magnetic field only,

using the following relations which are easily derived from (Z)

(x,z) 1 . H '(XZ)
x y
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H s (x ' z) I H NL (x,5) (42)

z y

The sum of the incident and the scattered fields, denoted by the superscripts i

and s respectively,is the total field. Since from (2)

+ + k2  H (x,.) = 0 (43)4x y

H a (x,z) may be assumed as follows
y

H(x,z) = f ( e c x + is dC (44)
y 71J

whereIm Im Tk2 - C2  > 0

In view of (13) and (15), the boundary conditions [(3), (4), (5)] on the screens

become

H (x,0) = 0 for x> 0 (45a)
11

H (x,0) = -H (x,0) for xC 0 (45b)12

Using (1), (42), and (44), it is obtained that

H , (x,Z) = I $ [ icos 'lZ + sinia 1 ,] f(C)eiCx+isdC" (46)

From (46) and (45a), it is seen that

[ i cos a 1 I + sin*,] f(c) = u () (47)

where u+(C) is regular in the upper half-plane Im C•-. . For x % 0, it is ob-
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tained from (46) and (13) that

H (x,z) = s (x,z) +H (x,z)

1 $ [icosaZ + sina.] f(C)eicx+i zdC

sin (a 2-a,) e -ik sec aix - ktana, z. ( 4 8 )

Rewriting (48) for z = 0 as,

H (x,0) + Hi (x,0) = i cos a2  + sin a2  f(C) - C+ksec a, e dC

(49)

and using (45b), it may be argued that

Cosa? sai sin (a-ad - (C) (50)

[I icos 0.2 + sin 0. sec a,

where L (C) is regular in the lower half-plane Im C < E . Eliminating f(C)

from (47) and (50), it results that

u.+( C0os a K?(C) i sin(a2 -a,) L(C) (51)
S(C) o- - C+k sec a(1

where,
ktan al',, 5Z

K1 2 () = (52)

The transform relation (51) is valid in the strip IIm C [ . The zeros of

K1,2 (C ) lie outside this strip. The standard Wiener-Hopf procedure requires the

splitting up of the functions in (52) in the form
KI+ (C) K 2+( )

K(C) - (C) K 2() = - (53)
K1 (C) K2 -(C)
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where

0-c log [ktan al 2
1 + t 2 _ k 2

K, ( exp, d.t (54)

The + and - functions are regular and not zero in the upper and lower half-planes

respectively. Using (53) and rewriting (51) as

+ cosa2 K2+ (C) i sin (a 2 - a) K2 - (-k sec al)
Cos a, KI+ C+ k sec a I Kl - (-k sec a,)

- K2 -(C) i sin (a 2  all K 2 (-k see a,) K(C)-L a,) K2'C (55)K-(c) C + ksec ai K, -(-k sec a,) K1 -(C)

it is seen that the left and the right sides are respectively regular in the upper

and the lower half-planes. Both sides are regular in the strip II-n -C < and

may be considered as analytic continuations of each other; together they define an

integral function in the finite C -plane. For I-. co , u+(C) is 0 (C - ) where

6 > 0 in. order that the integrals in (46) converge when z = 0. Also, it can be

shown that the factors K1,+ (C) are 0(1) as I C-*o. Hence, by Liouville's theorem,

the integral function defined by (55) is zero. Equating the left side of (55) to zero,

an expression for u +(C) is obtained and using it in (47) and (44), it readily follows

that

Sik sin (a2-a1) dC eiCX + i z K2 (-k seccl) K+ (C)
y 2i o

y k cos 0.2 [ktana,-JF -k2] [ +k seca 1] K1 (-k sec a) K (-

(56)
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Expressions for the transmitted and reflected surface waves and the radiation

field may be obtained by evaluating (56) asymptotically for large x . From (54),

it follows that

KI, 2+ (57)
KI, 2

and that K ( ) is analytic except for the branch points k and the logarithmic

singularities at + k sec al, 2 . The integrand in (54) is 0(-1 for large It I, and

hence, the integration contour [-co + to co +7] may be deformed into a new

one embracing the radial branch cut from k to m. This contour may be deformed

slightly at any point except possibly at k and C = k sec a, where the singu-

larities of the integrand occur. Hence, K1,2 (C) is analytic and non-zero every-

where except possibly at k and k sec al, 2 . In view of (57), K1 , 2 (C) is regular

and non-zero everywhere except at = -k - k sec a 1, 2 . It is evident from (52)

and (53) that

+ 2
K112 (C). -C

K, ( } = 2 (58)

Z-k - ktanal,2

Since K 1, (C) is regular and zero at C= k, it follows from (58) that K1,? (C) has a

branch point at = k. Again because K1 , (C) is regular and non-zero at

:k sec al, 2 , K1 ,2 () has a simple pole at C= k sec a,2 . In a similar fashion,

it follows from (58) that K1, (C) has a branch point at = - k and a zero at

- k sec a1, 2 . The integrand in (56) has,therefore, simple poles at C=±kseca 1 ,

-k sec a2 and branch points at C =+k . For x negative, (56) is evaluated by

deforming the contour to a line parallel to the original contour along the real axis

[Note that E has been set equal to zero] slightly in the lower half-plane and inden-

ted above at the singularities of the integrand which occur at C = -k, -k sec a1 ,
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and -k sec a2  The poles at -k sec cy, give rise to the surface wave,
1

whereas the singularity at = -k gives the radiation field which decays as 77
for large x . Hence, for large x , only the surface-wave contributions dominate

and the evaluation of the contribution of (56) at the poles C = -k sec aV 2 [Appen-

dix A] yields

He (x,z) = cos a, e-ik sec a x -ktanaz
y

- + ta 2
K 2 -(-ksecal) K, (-kseca 2 ) tan a 2  -ikseca 2 x-ktana 2 z+ cos L sec a (s.-s ca2
K,(-kseca) K 2 (-kseca2 ) seca 2 (sec a1 -seca

(59)

From (13) and (1), it is obvious that

H i (xz) =-Cos a e-ik sec aix-k tan a, z (60)

y1

Using (57), (59), and (60), the total transmitted surface wave for x e 0 is obtained

as

[H (xz)]t = H s (x,z) + Hi (x,z)
- Y

cos a1 K 2 - (-k seca1 ) a tan 2 -iksecaktanaz
"* e.

Kl-(k sec a2 )rl-(-k sec a) K 2 -(-kseca 2 ) seca secai-secoc)

(61)

Notice that the incident wave (60) completely nullifies the surface wave with the

value of k tan a1 for the attenuation factor in the z-direction. This should be the

case, since for x - 0, the screen is conducting in the 9 2 direction and hence can

support only a surface wave with an attenuation factor k tan a2  It may be easily

shown [Appendix A] that as a 2  a 1

[H (x,z = -cos 1 sec al x -k tan alz = H i (x,z) (62)
y Y
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This too should be the case, since the incident wave will then be transmitted as

it is without any disturbance.

For x -> 0 , (56) is evaluated by deforming the original contour along the

real axis to one parallel to it slightly in the upper half-plane and indented below

at the singularities C = k , and k sec a 1 . As before, the contribution of the in-

tegral (56) in the neighborhood of the singularity C = k gives rise to the radiation

field, which for large x is small compared to the surface wave term. Evaluating

the contribution of the integral near the pole gives the reflected surface wave

sin(a 2 -aI)tan a,' K 2 (-kseca,) 2 iksecalx -k tan a z
[Hy(x,y)] = 2 -isecax*ktna z (63)

[ r Zcosa 2 sec a,1  K, (-k sec ad) e

The radiation field is obtained by substituting (28) and (29) in (56) and

evaluating the resulting integral by the method of stationary phase for k p >> 1

The result when (52) is made use of is

S ei(kp+ sin (a 2 -a) K 2 (-k sec a)
[ ]H(x'z)R =/1 cos a. K,(-ksec a1 )

sinQ 1 K (kcos 0)

X [tan [l+i sing ] [ seca, - cos 0] K,-(kcos 0) (64)

The subscript R denotes the radiation field. Note that when a2 = 1 , the radia-

tion field goes to zero as it should.

It remains only to determine KI, 2 (C) from (54) which has been evaluated

by Kay [ 4] in a different connection. In what follows only the expressions for

IK1 , - (-)1 2 will be needed and this is taken from Kay's paper :
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IC 2--k + ktan a1,2  C> k

C-k (65)
- k sec al,'2

It is desired to find expressions for the power reflection coefficient R, the power

transmission coefficient T and a coefficient S for the radiated power which de-

note respectively the proportion of the incident power that is reflected, transmitted

and radiated. The total power in the reflected surface wave per unit width of

the guide is obtained from (63), (42) and (65) as

00 A . -b _ 2 sin (a 2-a )sin a ,
P r=Re x EXr * dz = 2 (66)kcos aZ(sec a+secal)2

0

The total power inthe transmitted surface wave is calculated from (61), (42) and

(65) as

Pt = 2Re C ,Et x t* dz = 8csa 1 tn.(67)t t t k(tan a 2+ tan a,) 2

0

The power radiated per unit width of the screen, per unit area in the direction 0

is obtained from (64), (42), and (28) for kp >'> 1 as

sin (a2- ad sec al
S =Re'EiHf() (68)

S = Re p , ER xHR ; cos a2  (sec + sec ad

where the radiation pattern f(O) is given by

f() = sin 0 (tan2 a1 + sin? 0) (sec a1 - cos 0) (seca 2 - cos 0) (69)
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Hence, the total radiated power is

P R S p d =a a sec a sec a

R Y J LP~~ k tan 2 a, (tan a 1 +tan al)s 2

2 an a 2 +tanZ a.1  L0

- tan a 1 tan a 2 sec 2 a + tan 2 2a tan 1 ] (70)

From (35), (66), (67), and (70), R, T, and S are obtained as

2  (seca 2 - sec a,)2
R sin a1 a.) 2 (71)
R I (tan a. + tan a.)

(tan a.2 - tan a.1 )2
T 1 - 1) (7Z)
T (tan a + tan a

a n d 2 o Z

S = - F tan 2a, sec aI seca, tana tanasec I
2tan a22 +tanal

tan2 a2 tan a 13
2 2

It is easily verified that R + T + S = 1 as it should. The radiation pattern (69) is

plotted in Fig. (2) for several values of a1 and a 2 . It is noticed that it has a

null in the plane of the waveguide. It is noticed that the beam width of the radia-

tion pattern increases as the maximum of the pattern moves away from the plane

of surface waveguide.

Radiation from Discontinuity Formed by the Junction of a Surface Waveguide and

a Perfectly Conducting Half-Plane

The surface waveguide in the region (- o.-- x < 0, - o < y co, z = 0) is

now assumed to be replaced by a perfectly conducting half-plane and the incident
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surface wave is the same as is given by (13). As before, the incident and hence,

the scattered fields are independent of the y-coordinate; therefore, it follows from

(2) that

E s = s  H s  1 E Ex IV y x T 52y

E S '1 a H s  Hs 1 E 8 (74)z 1KT- k6 y

One of the boundary conditions on the screen is that

E (x,0) = 0 - < x c (75)

Since from ( 13), 1 (x,0) = 0, it is obvious that E s (x,z) = 0. Therefore,

from (1) and (74), it results that
cot ~l.a1  H xz

E s (x,z) - a H s (xz) (76)
y I y

With the representation (44) for Hs (x,z) , it is derived from (74), (76), and (1)

that

1 9 1 f( c) e ' x +ig zd (7
E s (x,z) = - k(C) ed (77)

Is (x,z) = 1 5 cos a1  2 2 2 iCX+i

91 k sin a,

The remaining boundary conditions on the screens are

Hs (x,0) = 0 for x> 0 (79)

E s (x,0) = ie-iksec alx for x < 0 (80)

In view of (78) and (79), it results that

[k sec2 a l IC] f(C) = u+ (C) , (81)
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where u + (C) is regular in the upper half-plane Irn > - e In a similar man-

ner, from (77) and (80), it may be shown that

f(C) + L ( ) , (82)

k sin a1  C+kseca 1

where L- (C) is regular in the lower half-plane IM < - The transform re -

lations are regular in the strip JIm I < r , , ,1 hence, the Wiener-Hopf procedure

may be applied. By substituting for f(C) in (82) from (81) and rearranging the

resulting expression, it follows that

u-c u+(C) + k k sec a.

k sina 1 (k sec a, + ) (C+ k sec a,) + e

(k sec 1 - c)L (C) 1 k sec a, 2 k sec a (3

(Tk sec a + eca (3

By the arguments of the Wiener-Hopf procedure (83) may be shown to define an

integral function which is actually zero. Consequently from (83), (81), and (76), it

is obtained that

1 k Zk 2 tan a1 dC e iCX + igz

H (xz) _________ 2 2 2(84)y Fx,. " + k sec. l /-7- (C -k sec2 a,1)

For x negative, (84) is evaluated by deforming the contour to a line parallel to the

original contour along the real axis, slightly in the lower half-plane and indented

above the singularities of the integrand which occur at C = -k, -k sec a, . The
1

singularity at C = -k gives the radiation field which decays as -x for large x

and hence, for large negative x, the significant contribution arises due to the pole

C -k sec ai . Evaluation of the residue of the integral at the pole = -k seca,
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gives

[H 8 (x,z) ]t = cos a,1 e-iksecaix -ktana1z (85)
y t

Notice that (85) is exactly cancelled by the incident field (60). This should be the

case,since a perfectly conducting half-plane cannot support a surface wave of the

type (85).

For x > 0 , (84) is evaluated by deforming the original contour along the

real axis, to one parallel to it slightly in the upper half-plane and indented below

the singularity at C k sec a,1 . This pole gives rise to the reflected surface wave

and its value is

yi sin a e ik sec a1x - k tana1 z
[ r (+ sec a,)

To obtain the radiation field,(28) and (29) are substituted in (84) and the re-

sulting integral is evaluated by the method of stationary phase for kp >> 1 . The

result is

11
[ ( i(kp -) tan a1  (I + cos 0) .

[SylXz)] R = -P e 2 2 (87)
(l+secaia) I / (cos 9 - sec a,)

The total power in the reflected surface wave per unit width of the screen is easily

computed from (86), (74), and (76) as

00
P ,'x * dz2 sin a1

P r = , Er r k(l + sec a,) (88)

0

The power radiated per unit width of the screen, per unit area in the direction

o is obtained from (87), (74), (76), and (28) when kp >> 1 as

"& * 2 1 1 +cos 0
S:Re p~ • xHR =-Fp (l+secal) (secalco2 (89
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Hence, the total radiated power is

21r

P C S p dO =~ 4 1 (90)R =  d (l+sec aj) tana,

0

It is to be noted that Pr + PR is equal to Pi as given in (35) . The power reflec-

tion coefficient and the radiation pattern are noticed to be the same with or without

the terminating perfectly conducting half-plane.
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Appendix A

Evaluation of the Transmitted Surface Wave

00

iksin(a.2-l) d C eiCX +igz K2-(-ksec al) K+(C)S(N, Z) -- f 2Cos C2

-00[ktan al - k --- ][C+ksecal] K1 (-ksecal) K 2 (C)

(Al)

Evaluation of the Residue at - k sec a,

In view of (52) and (53)

K _ _+_(C)_= -__ _K_ _+ K ( (A 2)

Kl-(-ksec a1) [ktanI - k _ ' I Kl " (-ksec a,) Kl+(C)J-2 - k2

For C= -k sec a, [A 2] becomes equal to - 1  Therefore, the contribution

-kseca [AZ]ktana 1

of (A1) at the pole C = -kseca 1 is

T ksin(a 2 -al) K 2 (-ksecal) I e- iksecalx -ktana, z (A3)
irz cos a. K 2+ (-k sec ad tn i

Again from (52) and (53)

K2 (-k sec a) tan a1  (A4)

K2 +( -k sec a) tana, - tana?

With (A4), (A3) may be simplified to yield

- ik sec alx -ktan aiz (A5)cos a1 e ecx-taaz()
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Evaluation of the Residue at = -k sec a 2

From (52) and (53)

K2 +( K-( ) [IC27 k tan a,,] (A6)
- k2

Hence, (Al) becomes

k sin(a2 -a) OD d e icx +i~ z

Hs" (x, Z) = "
y -2icoosa.

-O [ktanal -4C-k2][C +kseca l ]

K 2 - (-k sec a) K,+(C) V- k(
K 1 ( -k sec a,) K2 - (C)[ 7ZTk - ktana]

The contribution of the integral (A7) at the simple pole C= -k sec a.2 is

k ksin(az-al) e -ikseca 2 x -ktana 2 z

-2 ,icosa.2 k [tana, - tan a 2 ] [ sec a1 - sec a 2 ]

K (-k sec at) KI+(-k sec a.) tan a 2  (A8)

K (-ksecal) K? (-kseca) kseca

After some simplification (A8) becomes

22
K - (-ksecad) Kl+(-kseca?) tanZ az-kscxktng .

cosa I Kl-(-ksecal) K,-(-kseca.) seca(secal - seca.2 )

(A9)
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It is obvious from (52) and (53) that
_ tan a

KI+(-ksec a 2 ) K1 - (-.k sec a.2 ) [I- tan a 2  (AIO)

Also, it is easy to see that as a tends to al

(seca 1 - seca 2 ) = - sin 2al seca, ( tan a, (A1)

Substituting (A10) and (All) in (A9) and passing to the limit, (A9) becomes

COS CL, e -iksecax -ktancaLz (A 12)

as CL2 tends to I.1
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